Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562529

RESUMO

Tinnitus is a disturbing condition defined as the occurrence of acoustic hallucinations with no actual sound. Although the mechanisms underlying tinnitus have been explored extensively, the pathophysiology of the disease is not completely understood. Moreover, genes and potential treatment targets related to auditory hallucinations remain unknown. In this study, we examined transcriptional-profile changes in the medial geniculate body after noise-induced tinnitus in rats by performing RNA sequencing and validated differentially expressed genes via quantitative polymerase chain reaction analysis. The rat model of tinnitus was established by analyzing startle behavior based on gap-pre-pulse inhibition of acoustic startles. We identified 87 differently expressed genes, of which 40 were upregulated and 47 were downregulated. Pathway-enrichment analysis revealed that the differentially enriched genes in the tinnitus group were associated with pathway terms, such as coronavirus disease COVID-19, neuroactive ligand-receptor interaction. Protein-protein-interaction networks were established, and two hub genes (Rpl7a and AC136661.1) were identified among the selected genes. Further studies focusing on targeting and modulating these genes are required for developing potential treatments for noise-induced tinnitus in patients.


Assuntos
Zumbido , Humanos , Ratos , Animais , Zumbido/genética , Zumbido/metabolismo , Corpos Geniculados/metabolismo , Ruído/efeitos adversos
2.
Int J Cardiol ; 401: 131829, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320667

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with significant morbidity and mortality. Hearing impairment has been linked to several cardiovascular diseases. However, the association between hearing disorders, genetic predisposition, and new-onset AF remains largely unknown. METHODS: A total of 476,773 participants (mean age 56.5 years) free of AF at baseline (from 2006 to 2010) were included from the UK Biobank study. The presence of hearing disorders including hearing difficulty and tinnitus was self-reported through the touchscreen questionnaire. AF was defined using ICD-10 code: I48 and was followed till February 1st. 2022. The Cox model was used to calculate hazard ratios (HRs) and 95% confidence intervals (95% CI). RESULTS: During a median follow-up of 13.0 years, the AF incidence rate was 2.9 per 1000 person-years. After adjustments for potential confounders, the presence of hearing difficulty (HR, 1.35; 95% CI: 1.32-1.39) and the use of hearing aid (1.45; 1.37-1.53) were significantly associated with risk of new-onset AF. Compared to individuals without tinnitus, the AF risk increased by 17% among those who experienced tinnitus occasionally (1.17; 1.09-1.25), 23% among those who experienced tinnitus frequently (1.23; 1.10-1.39), and 32% among those who experienced tinnitus consistently (1.32; 1.22-1.42). No significant difference was observed across different groups of genetic risk score for AF onset. CONCLUSIONS: Our study provides evidence regarding significant associations of hearing difficulty, use of hearing aid, and tinnitus with risk of incident AF. Findings highlight the potential that screening hearing disorders can benefit AF prevention.


Assuntos
Fibrilação Atrial , Zumbido , Humanos , Pessoa de Meia-Idade , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/genética , Estudos Prospectivos , Zumbido/diagnóstico , Zumbido/epidemiologia , Zumbido/genética , Bancos de Espécimes Biológicos , 60682 , Incidência , Predisposição Genética para Doença , Fatores de Risco
3.
J Assoc Res Otolaryngol ; 25(1): 13-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38334885

RESUMO

PURPOSE: To assess the available evidence to support a genetic contribution and define the role of common and rare variants in tinnitus. METHODS: After a systematic search and quality assessment, 31 records including 383,063 patients were selected (14 epidemiological studies and 17 genetic association studies). General information on the sample size, age, sex, tinnitus prevalence, severe tinnitus distribution, and sensorineural hearing loss was retrieved. Studies that did not include data on hearing assessment were excluded. Relative frequencies were used for qualitative variables to compare different studies and to obtain average values. Genetic variants and genes were listed and clustered according to their potential role in tinnitus development. RESULTS: The average prevalence of tinnitus estimated from population-based studies was 26.3% for any tinnitus, and 20% of patients with tinnitus reported it as an annoying symptom. One study has reported population-specific differences in the prevalence of tinnitus, the white ancestry being the population with a higher prevalence. Genome-wide association studies have identified and replicated two common variants in the Chinese population (rs2846071; rs4149577) in the intron of TNFRSF1A, associated with noise-induced tinnitus. Moreover, gene burden analyses in sequencing data from Spanish and Swede patients with severe tinnitus have identified and replicated ANK2, AKAP9, and TSC2 genes. CONCLUSIONS: The genetic contribution to tinnitus is starting to be revealed and it shows population-specific effects in European and Asian populations. The common allelic variants associated with tinnitus that showed replication are associated with noise-induced tinnitus. Although severe tinnitus has been associated with rare variants with large effect, their role on hearing or hyperacusis has not been established.


Assuntos
Perda Auditiva Neurossensorial , Zumbido , Humanos , Zumbido/epidemiologia , Zumbido/genética , Estudo de Associação Genômica Ampla , Audição , Hiperacusia
4.
Nat Commun ; 15(1): 614, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242899

RESUMO

Tinnitus is a heritable, highly prevalent auditory disorder treated by multiple medical specialties. Previous GWAS indicated high genetic correlations between tinnitus and hearing loss, with little indication of differentiating signals. We present a GWAS meta-analysis, triple previous sample sizes, and expand to non-European ancestries. GWAS in 596,905 Million Veteran Program subjects identified 39 tinnitus loci, and identified genes related to neuronal synapses and cochlear structural support. Applying state-of-the-art analytic tools, we confirm a large number of shared variants, but also a distinct genetic architecture of tinnitus, with higher polygenicity and large proportion of variants not shared with hearing difficulty. Tissue-expression analysis for tinnitus infers broad enrichment across most brain tissues, in contrast to hearing difficulty. Finally, tinnitus is not only correlated with hearing loss, but also with a spectrum of psychiatric disorders, providing potential new avenues for treatment. This study establishes tinnitus as a distinct disorder separate from hearing difficulties.


Assuntos
Surdez , Perda Auditiva Provocada por Ruído , Zumbido , Humanos , Zumbido/diagnóstico , Zumbido/genética , Cóclea
5.
Ear Hear ; 45(2): 370-377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37798826

RESUMO

OBJECTIVES: Potential reverse causality and unmeasured confounding factors are common biases in most neuroimaging studies on tinnitus and central correlates. The causal association of tinnitus with neuroimaging features also remains unclear. This study aimed to investigate the causal relationship of tinnitus with neuroplastic alterations using Mendelian randomization. DESIGN: Summary-level data from a genome-wide association study of tinnitus were derived from UK Biobank (n = 117,882). The genome-wide association study summary statistics for 4 global-brain tissue and 14 sub-brain gray matter volumetric traits were also obtained (n = up to 33,224). A bidirectional Mendelian randomization analysis was conducted to explore the causal relationship between tinnitus and neuroanatomical features at global-brain and sub-brain levels. RESULTS: Genetic susceptibility to tinnitus was causally associated with increased white matter volume (odds ratio [OR] = 2.361, 95% confidence interval [CI], 1.033 to 5.393) and total brain volume (OR = 2.391, 95% CI, 1.047 to 5.463) but inversely associated with cerebrospinal fluid volume (OR = 0.362, 95% CI, 0.158 to 0.826). A smaller gray matter volume in the left Heschl's gyrus and right insular cortex and larger gray matter volume in the posterior division of the left parahippocampal gyrus may lead to an increased risk for tinnitus (OR = 0.978, 95% CI, 0.961 to 0.996; OR = 0.987, 95% CI, 0.976 to 0.998; and OR = 1.015, 95% CI, 1.001 to 1.028, respectively). CONCLUSIONS: Genetic susceptibility to tinnitus was causally associated with increased white matter volume and total brain volume. Volume alteration in several cortical regions may indicate a higher tinnitus risk, and further research is recommended for causality inference at the level of sub-brain regions. Our findings provide genetic evidence for elucidating the underlying pathophysiological mechanisms of tinnitus-related neuroanatomical abnormalities.


Assuntos
Estudo de Associação Genômica Ampla , Zumbido , Humanos , Análise da Randomização Mendeliana , Zumbido/genética , Predisposição Genética para Doença , Neuroimagem
6.
Gene ; 875: 147507, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37230202

RESUMO

Tinnitus is the sound heard in the ear or head of a person in the absence of external stimuli. Its etiopathogenesis is still not fully understood and the etiological causes responsible for tinnitus are quite variable. Brain-derived neurotrophic factor (BDNF) is one of the key neurotrophic factors in the growth, differentiation, and survival of neurons and in the developing auditory pathway, including the inner ear sensory epithelium. The regulation of BDNF gene is known to be managed by BDNF antisense (BDNF-AS) gene. BDNF-AS is located downstream of the BDNF gene and transcribes a long non-coding RNA. Inhibition of BDNF-AS upregulates BDNF mRNA, which increases protein levels and stimulates neuronal development and differentiation. Thus, BDNF and BDNF-AS both may play roles in the auditory pathway. Polymorphisms in both genes may have impact on hearing performance. A link was suggested between tinnitus and BDNF Val66Met polymorphism. However, there is no study questioning the relationship of tinnitus with BDNF-AS polymorphisms linked with BDNF Val66Met polymorphism. Therefore, this study aimed to scrutinize the role of BDNF-AS polymorphisms showing linkage with the BDNF Val66Met polymorphism in the course of tinnitus pathophysiology. Six BDNF-AS polymorphisms were analyzed on the tinnitus patients (n = 85) and the control subjects (n = 60) by Fluidigm Real-Time PCR using the Fluidigm Biomark microfluidic platform. When BDNF-AS polymorphisms were compared between the groups in terms of genotype and gender distribution, statistically significant differences were detected in rs925946, rs1519480, and rs10767658, polymorphisms (p less than 0.05). When the polymorphisms were compared by the duration of tinnitus, significant differences were found in rs925946, rs1488830, rs1519480, and rs10767658 polymorphisms (p less than 0.05). According to genetic inheritance model analysis, 2.33 and 1.53-fold risks were found for the rs10767658 polymorphism in the recessive and the additive models, respectively. For the rs1519480 polymorphism, a 2.25 fold risk was observed in the additive model. For the rs925946 polymorphism, 2.44 fold protective effect in dominant model, and 0.62 fold risk was found in the additive model. In conclusion, four of the polymorphisms in BDNF-AS gene (rs955946, rs1488830, rs1519480, and rs10767658) are potential gene loci that may play a role in the auditory pathway and affect auditory performance.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Zumbido , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Genótipo , Audição , Polimorfismo de Nucleotídeo Único , Zumbido/genética
7.
Psychiatr Genet ; 33(4): 134-144, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222222

RESUMO

OBJECTIVE: Tinnitus can be regarded as a chronic stressor, leading to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. There is important comorbidity with anxiety, particularly panic, potentially associated with differences in HPA axis functioning and methylation patterns of HPA axis-related genes. This study examines DNA methylation of the glucocorticoid receptor gene ( NR3C1 ) exon 1F in adults with chronic subjective tinnitus and the possible differential effect of panic. METHODS: In a well characterized tinnitus sample ( n  = 22, half of which had co-occurring panic attacks), and unaffected controls ( n  = 31) methylation patterns of the CpG sites were determined using pyrosequencing and compared between groups through linear mixed models. Gene expression was determined using quantitative PCR on mRNA. RESULTS: Comparing the combined tinnitus groups to the control group, no DNA methylation differences were observed; however, the tinnitus group with panic attacks showed consistently higher mean methylation values across all CpGs compared to the tinnitus-only and the control group ( P  = 0.03 following Tukey correction), which became even more pronounced when accounting for childhood trauma ( P  = 0.012). Moreover, a significant positive correlation was found between methylation of the CpG7 site and the Beck Anxiety Inventory total score ( P  = 0.001) in the total population. NR3C1 -1F expression was not significantly different between the three groups. CONCLUSION: Panic is associated with higher DNA methylation of the NR3C1 exon 1F in adults with chronic subjective tinnitus, consistent with the reduced negative glucocorticoid feedback and HPA axis hyperfunction observed in individuals with panic disorder.


Assuntos
Glucocorticoides , Zumbido , Adulto , Humanos , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Zumbido/genética , Zumbido/metabolismo , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal/metabolismo , Metilação de DNA/genética , Éxons/genética
8.
Genes (Basel) ; 15(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254912

RESUMO

Meniere disease (MD) is a debilitating disorder of the inner ear defined by sensorineural hearing loss (SNHL) associated with episodes of vertigo and tinnitus. Severe tinnitus, which occurs in around 1% of patients, is a multiallelic disorder associated with a burden of rare missense single nucleotide variants in synaptic genes. Rare structural variants (SVs) may also contribute to MD and severe tinnitus. In this study, we analyzed exome sequencing data from 310 MD Spanish patients and selected 75 patients with severe tinnitus based on a Tinnitus Handicap Inventory (THI) score > 68. Three rare deletions were identified in two unrelated individuals overlapping the ERBB3 gene in the positions: NC_000012.12:g.56100028_56100172del, NC_000012.12:g.56100243_56101058del, and NC_000012.12:g.56101359_56101526del. Moreover, an ultra-rare large duplication was found covering the AP4M1, COPS6, MCM7, TAF6, MIR106B, MIR25, and MIR93 genes in another two patients in the NC_000007.14:g.100089053_100112257dup region. All the coding genes exhibited expression in brain and inner ear tissues. These results confirm the contribution of large SVs to severe tinnitus in MD and pinpoint new candidate genes to get a better molecular understanding of the disease.


Assuntos
Orelha Interna , Doença de Meniere , Fatores Associados à Proteína de Ligação a TATA , Zumbido , Humanos , Doença de Meniere/genética , Zumbido/genética , Genes Reguladores , Variação Genética , Complexo do Signalossomo COP9 , Proteínas Adaptadoras de Transdução de Sinal
9.
Sci Rep ; 12(1): 22511, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581688

RESUMO

Tinnitus, a phantom perception of sound in the absence of any external sound source, is a prevalent health condition often accompanied by psychiatric comorbidities. Recent genome-wide association studies (GWAS) highlighted a polygenic nature of tinnitus susceptibility. A shared genetic component between tinnitus and psychiatric conditions remains elusive. Here we present a GWAS using the UK Biobank to investigate the genetic processes linked to tinnitus and tinnitus-related distress, followed by gene-set enrichment analyses. The UK Biobank sample comprised 132,438 individuals with tinnitus and genotype data. Among the study sample, 38,525 individuals reported tinnitus, and 26,889 participants mentioned they experienced tinnitus-related distress in daily living. The genome-wide association analyses were conducted on tinnitus and tinnitus-related distress. We conducted enrichment analyses using FUMA to further understand the genetic processes linked to tinnitus and tinnitus-related distress. A genome-wide significant locus (lead SNP: rs71595470) for tinnitus was obtained in the vicinity of GPM6A. Nineteen independent loci reached suggestive association with tinnitus. Fifteen independent loci reached suggestive association with tinnitus-related distress. The enrichment analysis revealed a shared genetic component between tinnitus and psychiatric traits, such as bipolar disorder, feeling worried, cognitive ability, fast beta electroencephalogram, and sensation seeking. Metabolic, cardiovascular, hematological, and pharmacological gene sets revealed a significant association with tinnitus. Anxiety and stress-related gene sets revealed a significant association with tinnitus-related distress. The GWAS signals for tinnitus were enriched in the hippocampus and cortex, and for tinnitus-related distress were enriched in the brain and spinal cord. This study provides novel insights into genetic processes associated with tinnitus and tinnitus-related distress and demonstrates a shared genetic component underlying tinnitus and psychiatric conditions. Further collaborative attempts are necessary to identify genetic components underlying the phenotypic heterogeneity in tinnitus and provide biological insight into the etiology.


Assuntos
Transtorno Bipolar , Zumbido , Humanos , Estudo de Associação Genômica Ampla , Zumbido/genética , Encéfalo , Transtorno Bipolar/complicações , Transtorno Bipolar/genética , Genótipo , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
10.
Cancer Med ; 11(14): 2801-2816, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322580

RESUMO

PURPOSE: Cisplatin is a critical component of first-line chemotherapy for several cancers, but causes peripheral sensory neuropathy, hearing loss, and tinnitus. We aimed to identify comorbidities for cisplatin-induced neurotoxicities among large numbers of similarly treated patients without the confounding effect of cranial radiotherapy. METHODS: Utilizing linear and logistic regression analyses on 1680 well-characterized cisplatin-treated testicular cancer survivors, we analyzed associations of hearing loss, tinnitus, and peripheral neuropathy with nongenetic comorbidities. Genome-wide association studies and gene-based analyses were performed on each phenotype. RESULTS: Hearing loss, tinnitus, and peripheral neuropathy, accounting for age and cisplatin dose, were interdependent. Survivors with these neurotoxicities experienced more hypertension and poorer self-reported health. In addition, hearing loss was positively associated with BMIs at clinical evaluation and nonwork-related noise exposure (>5 h/week). Tinnitus was positively associated with tobacco use, hypercholesterolemia, and noise exposure. We observed positive associations between peripheral neuropathy and persistent vertigo, tobacco use, and excess alcohol consumption. Hearing loss and TXNRD1, which plays a key role in redox regulation, showed borderline significance (p = 4.2 × 10-6 ) in gene-based analysis. rs62283056 in WFS1 previously found to be significantly associated with hearing loss (n = 511), was marginally significant in an independent replication cohort (p = 0.06; n = 606). Gene-based analyses identified significant associations between tinnitus and WNT8A (p = 2.5 × 10-6 ), encoding a signaling protein important in germ cell tumors. CONCLUSIONS: Genetics variants in TXNRD1 and WNT8A are notable risk factors for hearing loss and tinnitus, respectively. Future studies should investigate these genes and if replicated, identify their potential impact on preventive strategies.


Assuntos
Antineoplásicos , Perda Auditiva , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Neoplasias Testiculares , Zumbido , Antineoplásicos/efeitos adversos , Cisplatino/uso terapêutico , Estudo de Associação Genômica Ampla , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Humanos , Masculino , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Farmacogenética , Transtornos das Sensações , Neoplasias Testiculares/genética , Zumbido/induzido quimicamente , Zumbido/genética
11.
Mol Diagn Ther ; 26(2): 129-136, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167110

RESUMO

The feasibility to unravel genetic and genomic signatures for disorders affecting the auditory system has accelerated since arriving in the post-genomics era roughly 20 years ago. Newly emerging studies have provided initial landmarks signaling heritability and thus, a genetic link, to severe tinnitus. Tinnitus, the phantom perception of ringing in the ears, is experienced by at least 15% of the adult population and can be extremely disabling. Despite its ubiquity, there is no cure for tinnitus and modalities offering relief are often of limited success. Because tinnitus is frequently reported in patients with acquired conductive or sensorineural hearing impairment, it has been widely accepted that tinnitus is secondary to and a symptom arising from hearing impairment. However, tinnitus has also been identified in the absence of auditory dysfunction and in young individuals, resulting in a debate about its origins. Genetics studies have identified severe tinnitus as a complex disorder arising from gene and environment interactions, refining its classification as a neurological disorder and, in at least a subset of patients, it appears not as a symptom of another health issue. This current opinion summarizes several recent studies that have challenged a long-accepted dogma and postulates how this information could eventually be used in the future to help patients. It is with great hope that this knowledge opens translational paths to provide relief for the many who suffer from the burden of tinnitus on a daily basis.


Assuntos
Perda Auditiva , Zumbido , Adulto , Genômica , Perda Auditiva/complicações , Humanos , Zumbido/diagnóstico , Zumbido/genética
12.
Acta Otolaryngol ; 142(1): 36-42, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34915804

RESUMO

BACKGROUND: Neurofibromatosis type 2 (NF2) is an autosomal dominantly inherited disease with slow, yet potentially life-threatening progression. OBJECTIVE: We describe the clinical manifestations and genetic profile of a family with NF2. METHODS: We enrolled a 16-member family with NF2. We collected clinical examinations and imaging information. Genetic analysis was conducted through multiplex ligation-dependent probe amplification (MLPA). The SALSA MLPA probemix P044-B2 NF2 kit was used to detect genetic variations in genomic upstream and 17 exons of the NF2 gene. RESULTS: The most common clinical manifestation was hearing impairment (37.5%), followed by tinnitus (18.8%). Four participants had vestibular schwannoma: 2 were bilateral and 2 unilateral, and tumor size ranged from 86.3 to 5064 mm3. A weak correlation between hearing impairment and tumor size was observed. Genetic analysis revealed that the DNA dosages of exons 9, 10, and 11 of the NF2 gene in 3 diseased family members (participants #3, #5, and #11) were higher than those in the controls. However, we could not detect an indicative abnormal DNA dosage of NF2 in participant #6 despite such a dosage being considered a diagnostic indicator of NF2. CONCLUSIONS: Hearing impairment was the most common clinical manifestation in this family. The NF2 gene is a gene of interest that warrants familial genetic screening.


Assuntos
Genes da Neurofibromatose 2 , Neurofibromatose 2/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Testes Genéticos , Genótipo , Perda Auditiva/genética , Testes Auditivos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Zumbido/genética , Carga Tumoral , Adulto Jovem
13.
Hum Genet ; 141(3-4): 981-990, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34318347

RESUMO

Genome-wide association studies (GWAS) provide an unbiased first look at genetic loci involved in aging and noise-induced sensorineural hearing loss and tinnitus. The hearing phenotype, whether audiogram-based or self-report, is regressed against genotyped information at representative single nucleotide polymorphisms (SNPs) across the genome. Findings include the fact that both hearing loss and tinnitus are polygenic disorders, with up to thousands of genes, each of effect size of < 0.02. Smaller human GWAS' were able to use objective measures and identified a few loci; however, hundreds of thousands of participants have been required for the statistical power to identify significant variants, and GWAS is unable to assess rare variants with mean allele frequency < 1%. Animal studies are required as well because of inability to access the human cochlea. Mouse GWAS builds on linkage techniques and the known phenotypic differences in auditory function between inbred strains. With the advantage that the laboratory environment can be controlled for noise and aging, the Hybrid Mouse Diversity Panel (HDMP) combines 100 strains sequenced at high resolution. Lift-over regions between mice and humans have identified over 17,000 homologous genes. Since most significant SNPs are either intergenic or in introns, and binding sites between species are poorly preserved between species, expression quantitative trait locus information is required to bring humans and mice into agreement. Transcriptome-wide analysis studies (TWAS) can prioritize putative causal genes and tissues. Diverse species, each making a distinct contribution, carry a synergistic advantage in the quest for treatment and ultimate cure of sensorineural hearing difficulties.


Assuntos
Surdez , Perda Auditiva Provocada por Ruído , Zumbido , Animais , Surdez/genética , Estudo de Associação Genômica Ampla/métodos , Perda Auditiva Provocada por Ruído/genética , Humanos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zumbido/complicações , Zumbido/genética
14.
Ear Hear ; 43(1): 70-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34108397

RESUMO

OBJECTIVES: To investigate the causal role of established risk factors and associated conditions to tinnitus and tinnitus severity in the UK Biobank. DESIGN: The prospective cohort study with large dataset of >500,000 individuals. The analytical sample of 129,731 individuals in the UK Biobank of European descent. Participants were recruited from National Health Service registries, baseline age range between 37 and 73 years, response rate to baseline survey 6%. Participants were asked subjective questions about tinnitus and its severity. Previously observed associations (n = 23) were confirmed in the UK Biobank using logistic and ordinal regression models. Two-sample Mendelian randomization approaches were then used to test causal relationships between the 23 predictors and tinnitus and tinnitus severity. The main outcome measures were observational and genetic association between key demographics and determinants and two tinnitus outcomes (current tinnitus and tinnitus severity). RESULTS: Prevalence of tinnitus was 20% and severe tinnitus 3.8%. The observational results are consistent with the previous literature, with hearing loss, older age, male gender, high BMI, higher deprivation, higher blood pressure, smoking history, as well as numerous comorbidities being associated with higher odds of current tinnitus. Mendelian randomization results showed causal correlations with tinnitus. Current tinnitus was predicted by genetically instrumented hearing loss (odds ratio [OR]: 8.65 [95% confidence interval (CI): 6.12 to 12.23]), major depression (OR: 1.26 [95% CI: 1.06 to 1.50]), neuroticism (OR: 1.48 [95% CI: 1.28 to 1.71]), and higher systolic blood pressure (OR: 1.01 [95% CI:1.00 to 1.02]). Lower odds of tinnitus were associated with longer duration in education (OR: 0.74 [95% CI: 0.63 to 0.88]), higher caffeine intake (OR: 0.89 [95% CI: 0.83 to 0.95]) and being a morning person (OR: 0.94 [95% CI: 0.90 to 0.98]). Tinnitus severity was predicted by a higher genetic liability to neuroticism (OR: 1.15 [95% CI: 1.06 to 1.26]) and schizophrenia (OR: 1.02 [95% CI: 1.00 to 1.04]). CONCLUSIONS: Tinnitus data from the UK Biobank confirm established associated factors in the literature. Genetic analysis determined causal relationships with several factors that expand the understanding of the etiology of tinnitus and can direct future pathways of clinical care and research.


Assuntos
Análise da Randomização Mendeliana , Zumbido , Adulto , Idoso , Bancos de Espécimes Biológicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Medicina Estatal , Zumbido/epidemiologia , Zumbido/genética , Reino Unido/epidemiologia
15.
Genes (Basel) ; 12(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34828318

RESUMO

Clinical presentation is heterogeneous for autosomal dominant nonsyndromic hearing loss (ADNSHL). Variants of KCNQ4 gene is a common genetic factor of ADNSHL. Few studies have investigated the association between hearing impairment and the variant c.546C>G of KCNQ4. Here, we investigated the phenotype and clinical manifestations of the KCNQ4 variant. Study subjects were selected from the participants of the Taiwan Precision Medicine Initiative. In total, we enrolled 12 individuals with KCNQ4 c.546C>G carriers and 107 non-carriers, and performed pure tone audiometry (PTA) test and phenome-wide association (PheWAS) analysis for the patients. We found that c.546C>G variant was related to an increased risk of hearing loss. All patients with c.546C>G variant were aged >65 years and had sensorineural and high frequency hearing loss. Of these patients, a third (66.7%) showed moderate and progressive hearing loss, 41.7% complained of tinnitus and 16.7% complained of vertigo. Additionally, we found a significant association between KCNQ4 c.546C>G variant, aortic aneurysm, fracture of lower limb and polyneuropathy in diabetes. KCNQ4 c.546C>G is likely a potentially pathogenic variant of ADNSHL in the elderly population. Genetic counseling, annual audiogram and early assistive listening device intervention are highly recommended to prevent profound hearing impairment in this patient group.


Assuntos
Povo Asiático/genética , Surdez/genética , Canais de Potássio KCNQ/genética , Polimorfismo de Nucleotídeo Único , Zumbido/epidemiologia , Vertigem/epidemiologia , Adulto , Fatores Etários , Idade de Início , Idoso , Audiometria de Tons Puros , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenômica , Taiwan/epidemiologia , Zumbido/genética , Vertigem/genética
16.
BMC Genom Data ; 22(1): 31, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34482816

RESUMO

BACKGROUND: Tinnitus is an auditory phantom sensation in the absence of an acoustic stimulus, which affects nearly 15% of the population. Excessive noise exposure is one of the main causes of tinnitus. To now, the knowledge of the genetic determinants of susceptibility to tinnitus remains limited. RESULTS: We performed a two-stage genome-wide association study (GWAS) and identified that two single nucleotide polymorphisms (SNPs), rs2846071 located in the intergenic region at 11q13.5 (odds ratio [OR] = 2.14, 95% confidence interval [CI] = 1.96-3.40, combined P = 4.89 × 10- 6) and rs4149577 located in the intron of TNFRSF1A gene at 12p13.31 (OR = 2.05, 95% CI = 1.89-2.51, combined P = 6.88 × 10- 6), are significantly associated with the susceptibility to noise-induced tinnitus. Furthermore, the expression quantitative trait loci (eQTL) analyses revealed that rs2846071 is significantly correlated with the expression of WNT11 gene, and rs4149577 with the expression of TNFRSF1A gene in multiple brain tissues (all P < 0.05). The newly identified candidate gene WNT11 is involved in Wnt pathway, and TNFRSF1A in the tumor necrosis factor pathway, respectively. Pathway enrichment analyses also showed that these two pathways are closely relevant to tinnitus. CONCLUSIONS: Our findings highlight two novel loci at 11q13.5 and 12p13.31 conferring susceptibility to noise-induced tinnitus. and suggest that the WNT11 and TNFRSF1A genes might be the candidate causal targets of 11q13.5 and 12p13.31 loci, respectively.


Assuntos
Povo Asiático/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Zumbido/genética , China/etnologia , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 12/genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
17.
Otol Neurotol ; 42(9): e1203-e1212, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282101

RESUMO

INTRODUCTION: Subjective tinnitus, a perception of phantom sound, is a common otological condition that affects almost 15% of the general population. It is known that noise-induced hearing loss (NIHL) and tinnitus exhibit a high level of comorbidity in individuals exposed to intense noise and music. However, the influence of genetic variants associated with NIHL on tinnitus remains elusive. We hypothesized that young musicians carrying genetic variants associated with NIHL would exhibit a higher prevalence of tinnitus than their counterparts. METHODS: To test this hypothesis, we analyzed the database by Bhatt et al. (2020) (originally developed by Phillips et al., 2015) that investigated the genetic links to NIHL in young college-aged musicians. The present study identified 186 participants (average age = 20.3 yrs, range = 18-25 yrs) with normal tympanometry and otoscopic findings and with no missing data. We included 19 single nucleotide polymorphisms in 13 cochlear genes that were previously associated with NIHL. The candidate genes include: KCNE1, KCNQ1, CDH23, GJB2, GJB4, KCNJ10, CAT, HSP70, PCDH70, MYH14, GRM7, PON2, and ESRRB. RESULTS: We find that individuals with at least one minor allele of rs163171 (C > T) in KCNQ1 exhibit significantly higher odds of reporting tinnitus compared to individuals carrying the major allele of rs163171. KCNE1 rs2070358 revealed a suggestive association (p = 0.049) with tinnitus, but the FDR corrected p-value did not achieve statistical significance (p < 0.05). A history of ear infection and sound level tolerance showed a statistically significant association with tinnitus. Music exposure showed a suggestive association trend with tinnitus. Biological sex revealed a statistically significant association with distortion product otoacoustic emissions SNR measures. CONCLUSIONS: We concluded that KCNQ1/KCNE1 voltage-gated potassium ion channel plays a critical role in the pathogenesis of NIHL and tinnitus. Further research is required to construct clinical tools for identifying genetically predisposed individuals well before they acquire NIHL and tinnitus.


Assuntos
Perda Auditiva Provocada por Ruído , Canal de Potássio KCNQ1/genética , Música , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Zumbido , Adolescente , Adulto , Predisposição Genética para Doença , Perda Auditiva Provocada por Ruído/epidemiologia , Perda Auditiva Provocada por Ruído/genética , Humanos , Polimorfismo de Nucleotídeo Único , Zumbido/etiologia , Zumbido/genética , Adulto Jovem
19.
EBioMedicine ; 66: 103309, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33813136

RESUMO

BACKGROUND: tinnitus is a heterogeneous condition associated with audiological and/or mental disorders. Chronic, severe tinnitus is reported in 1% of the population and it shows a relevant heritability, according to twins, adoptees and familial aggregation studies. The genetic contribution to severe tinnitus is unknown since large genomic studies include individuals with self-reported tinnitus and large heterogeneity in the phenotype. The aim of this study was to identify genes for severe tinnitus in patients with extreme phenotype. METHODS: for this extreme phenotype study, we used three different cohorts with European ancestry (Spanish with Meniere disease (MD), Swedes tinnitus and European generalized epilepsy). In addition, four independent control datasets were also used for comparisons. Whole-exome sequencing was performed for the MD and epilepsy cohorts and whole-genome sequencing was carried out in Swedes with tinnitus. FINDINGS: we found an enrichment of rare missense variants in 24 synaptic genes in a Spanish cohort, the most significant being PRUNE2, AKAP9, SORBS1, ITGAX, ANK2, KIF20B and TSC2 (p < 2E-04), when they were compared with reference datasets. This burden was replicated for ANK2 gene in a Swedish cohort with 97 tinnitus individuals, and in a subset of 34 Swedish patients with severe tinnitus for ANK2, AKAP9 and TSC2 genes (p < 2E-02). However, these associations were not significant in a third cohort of 701 generalized epilepsy individuals without tinnitus. Gene ontology (GO) and gene-set enrichment analyses revealed several pathways and biological processes involved in severe tinnitus, including membrane trafficking and cytoskeletal protein binding in neurons. INTERPRETATION: a burden of rare variants in ANK2, AKAP9 and TSC2 is associated with severe tinnitus. ANK2, encodes a cytoskeleton scaffolding protein that coordinates the assembly of several proteins, drives axonal branching and influences connectivity in neurons.


Assuntos
Predisposição Genética para Doença , Variação Genética , Sinapses/genética , Zumbido/diagnóstico , Zumbido/genética , Alelos , Animais , Encéfalo/metabolismo , Biologia Computacional/métodos , Feminino , Ontologia Genética , Estudos de Associação Genética , Humanos , Masculino , Camundongos , Fenótipo , Índice de Gravidade de Doença , Suécia , Sequenciamento do Exoma
20.
Sci Rep ; 11(1): 6470, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742053

RESUMO

Tinnitus is a prevalent condition in which perception of sound occurs without an external stimulus. It is often associated with pre-existing hearing loss or noise-induced damage to the auditory system. In some individuals it occurs frequently or even continuously and leads to considerable distress and difficulty sleeping. There is little knowledge of the molecular mechanisms involved in tinnitus which has hindered the development of treatments. Evidence suggests that tinnitus has a heritable component although previous genetic studies have not established specific risk factors. From a total of 172,608 UK Biobank participants who answered questions on tinnitus we performed a case-control genome-wide association study for self-reported tinnitus. Final sample size used in association analysis was N = 91,424. Three variants in close proximity to the RCOR1 gene reached genome wide significance: rs4906228 (p = 1.7E-08), rs4900545 (p = 1.8E-08) and 14:103042287_CT_C (p = 3.50E-08). RCOR1 encodes REST Corepressor 1, a component of a co-repressor complex involved in repressing neuronal gene expression in non-neuronal cells. Eleven other independent genetic loci reached a suggestive significance threshold of p < 1E-06.


Assuntos
Proteínas Correpressoras/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Zumbido/genética , Feminino , Humanos , Masculino , Fenótipo , Zumbido/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...